
The OpenType Layout Model

OpenType layout data is organized
by script, language system,
typographic feature and lookup.

appendix vi: opent ype font technology

1

Laguage system Laguage system Laguage system

Script

Lookup

LookupFeature

LookupFeature

Lookup

Lookup

Feature

Lookup

Contents
1. A short history of font technology
2. What is OpenType?
3. The structure of Open Type fonts
4. The Open Type Layout Model
5. Generating Open Type fonts with dtl FontMaster

1. A short history of font technology
Before 1980 Proprietary and hardware dependent font formats (bitmap,

vector).
1974–1978 Ikarus outline font format (open format, machine

independent, font data base format).
Mid 1980s Scalable font formats (outline + hints).

– urw vs, bs.
– Type 1 (based on Bezier and urw-like hints).
– F3, Bitstreams Speedo and others …

Late 1980s Development of TrueType by Apple (Unicode based,
instructions, flexible and expandable).
– Implementation on the Macintosh in 1990.
– Implementation in Windows 3.1 in 1991.

1991 Opening of Type 1 Format (Adobe) (1- Byte font format).
T0 font format for 2-Byte fonts.

1993 cid font format for cjk (2-Byte).
– Took 5– 6 years to appear on the market.

1994 TrueType gx (advanced Layout features).
– Failed on the market.

1995 tto (multilingual support, Layout features for Arabic).
• ttc (TrueType Collection Files).
1996 sfnt-Wrapped cid Fonts (Adobe, Mac platform).
1997 OpenType specification.

1.1 Conclusion
– Font technology has been rapidly developed during the last 20 years.
– Font technology has become a very important part in the computerized
world.
– Parallel to globalization, fonts have been been extended to complex
scripts like Arabic, Indic, Thai etc. and to large character sets for China,
Japan and Korea.
– Fonts are becoming more and more complex, which puts more pressure
on the font developer and designer.
– The evolution of the font formats also allows the use of fine typographic
features.

appendix vi: opent ype font technology

2

In
cr

ea
si

ng
 co

m
pl

ex
it

y

2. What is OpenType ?
Open Type is more than a simple font format, it is an architecture with
building blocks:
– OpenType fonts.
– Operating System support.
– Application support.
– Printer support.

OpenType fonts have four essential ingredients:
– Outline description (Bezier, quadratic splines …).
– Hinting information for screen optimization (hints, instructions).
– Character mapping tables.
– Features (for glyph substitution and positioning).

OpenType fonts come in two flavours:
– Type 1 outlines, hints (.otf)
– TrueType outlines, instructions (.ttf)

There is no standard as to what an OpenType font must contain (this might
be dizcult for the customer and but also for marketing):
– 256 – >50000 glyphs.
– hundreds of features or none.

2.1 os Support
OpenType fonts should work on diuerent platforms (Windows,
Mac os, Linux). Windows 2000 and xp support both otf flavours natively
and support many features (not all) through its Uniscribe api and the otls
(OpenType Layout Services Library). Mac os 9.2 and os x support for both
otf flavours is limited. Glyph access and rendering is supported but there is
no os support for layout features. Apple supports instead its own Apple
Advanced Technology (aat) technology, which is a renamed version of gx.
This means that fonts which should work on both platforms must support
both OpenType layout tables as well as the aat tables. Linux should
support OpenType through Freetype.

2.2 Applications
Applications are using the outlines, hints and feature tables. Adobe has
implemented the feature font support into the applications such as
InDesign, PhotoShop, etcetera. These programs are platform independent,
and os independent).

appendix vi: opent ype font technology

3

3. The structure of OpenType fonts
OpenType fonts have a common table structure like ttfs (also called sfnt
on the Macintosh). OpenType Fonts may use Type 1-like outlines and hints
or TrueType-like outlines and hints. The reason for that was probably that
neither Microsoft nor Adobe wanted to throw away the considerable
amount of work which had been done on the Type 1 and TrueType
architectures.

Advantages of Type 1-like outlines (cff table):
– Simple hinting structure, intelligence in the rasterizer.
– Thousands of existing Type 1 fonts can be converted without quality loss.
– Bezier outlines are familiar to (type) designers.

Advantages of TrueType outlines (glyf table):
– Powerful instructions for suberb screen quality.
– Quadratic spline outlines.

Other information is stored in common tables, such as:
– cmap for the mapping of glyphs –> Unicode code points.
– head, hhea for header information.
– os/2 for general font information.
– Gasp for greyscaling.

Essential for OpenType are the following tables:
– gpos glyph positioning
– gsub glyph substitution
– gdef glyph definition
– base baseline table for diuerent scripts
– jstf justification
– dsig digital signature

The main diuerence with simple TrueType fonts is the presence of some of
the above listed tables which allow access to glyphs which have no direct
Unicode codepoint. For complex scripts, i.e. writing systems that require
some degree of character reordering and/or glyph processing to display,
print or edit text (such as Arabic or Indic) Open Type tables are absolutely
necessary.

Using this technology permits the font developer to implement:
– OpenType Layout fonts allow a rich mapping between characters and
glyphs, which supports ligatures, positional forms, alternates, and other
substitutions.
– OpenType Layout fonts include information to support features for two-
dimensional positioning and glyph attachment.
– OpenType Layout fonts contain explicit script and language information,

appendix vi: opent ype font technology

4

R
eq

ui
re

d

O
ut

lin
e

O
pt

io
na

l

B
it

m
ap

o
tf

aa
t

A
do

be

T
ru

eT
yp

e
(t

tf
)

he
ad

, h
he

a,
 h

m
tx

na
m

e
o

s/
2

m
ax

p
po

st
cm

ap

gl
yf

, l
oc

a
cv

t,
fp

gm
, p

re
p

ga
sp

hd
m

x
ke

rn
lt

sh
pc

lt
vd

m
x

vh
ea

vm
tx

eb
d

t
eb

lc
eb

sc

A
pp

le
s t

tf
 (a

at
/g

x)

he
ad

, h
he

a,
 h

m
tx

na
m

e
o

s/
2

m
ax

p
po

st
cm

ap

gl
yf

, l
oc

a
cv

t,
fp

gm
, p

re
p

ga
sp

hd
m

x
ke

rn
vh

ea
vm

tx

bd
at

bl
oc

m
or

t,
fe

at
, b

sl
n,

 p
ro

p
op

db
, t

ra
k,

 ju
st

 …
fv

ar
, g

va
r,

Z
ap

f …

O
pe

nT
yp

e
(t

tf
)

he
ad

, h
he

a,
 h

m
tx

na
m

e
o

s/
2

m
ax

p
po

st
cm

ap
d

si
g

gl
yf

, l
oc

a
cv

t,
fp

gm
, p

re
p

ga
sp

hd
m

x
ke

rn
lt

sh
pc

lt
vd

m
x

vh
ea

vm
tx

eb
d

t
eb

lc
eb

sc

ba
se

 (b
as

el
in

e
da

ta
)

g
d

ef
 (g

ly
ph

 d
efi

ni
tio

n)
g

po
s

(g
ly

ph
 p

os
iti

on
in

g)
g

su
b

(g
ly

ph
 su

bs
tit

ut
io

n)
js

tf
 (J

us
ti

fic
at

io
n)

O
pe

nT
yp

e
(0

tf
)

he
ad

, h
he

a,
 h

m
tx

na
m

e
o

s/
2

m
ax

p
po

st
cm

ap

cf
f

ga
sp

ke
rn

vh
ea

vm
tx

vo
rg

ba
se

 (b
as

el
in

e
da

ta
)

g
d

ef
 (g

ly
ph

 d
efi

ni
tio

n)
g

po
s

(g
ly

ph
 p

os
iti

on
in

g)
g

su
b

(g
ly

ph
 su

bs
tit

ut
io

n)
js

tf
 (J

us
ti

fic
at

io
n)

sf
n

t-
ci

d
(A

do
be

)

cm
ap

na
m

e
po

st

ci
d

bd
at

bl
oc

fa
et

m
or

t

al
m

x
bb

ox
fn

am
, h

fm
x,

 v
fm

x

appendix vi: opent ype font technology

5

Latin

Cyrillic

Greek

cj (K)

Hangul (K)

Hangul Jamo

Katakana

Arabic

Devanagari

acnt accent attachment table
avar axis variation table
bdat bitmap data table
bhed bitmap font header table
bloc bitmap location table
bsln baseline table
cmap character code mapping

table
cvar cvt variation table
cvt control value table
ebsc embedded bitmap scaling

control table
fdsc font descriptor table
feat layout feature table
fmtx font metrics table
fpgm font program table
fvar font variation table
gasp gridfitting and scancon-

version procedure table
glyf glyph outline table
gvar glyph variation table
hdmx horizontal device

metrics table
head font header table

hhea horizontal header table
hmtx horizontal metrics table
hsty horizontal style table
just justification table
kern kerning table
lcar ligature caret table
loca glyph location table
maxp maximum profile table
mort metamorphosis table
morx extended metamor-

phosis table
name name table
opbd optical bounds table
os/2 compatibility table
post glyph name PostScript

compatibility table
prep control value program

table
prop properties table
trak tracking table
vhea vertical header table
vmtx vertical metrics table
Zapf glyph reference table

appendix vi: opent ype font technology

6

The TrueType Font File (Apple’s specification aat)

so a textprocessing application can adjust its behavior accordingly.
– OpenType Layout fonts have an open format that allows font developers
to define their own typographical features.

4. The OpenType Layout model
4.1 Scripts

Scripts are defined at the top level. A script is a collection of glyphs used to
represent one or more languages in writing. For instance, a single script-
Latin is used to write English, French, German, and many other languages.
In contrast, three scripts –Hiragana, Katakana, and Kanji– are used to write
Japanese. With OpenType Layout, multiple scripts may be supported by a
single font.

4.2 Language system
A language system may modify the functions or appearance of glyphs in a
script to represent a particular language. For example, the eszet ligature

is used in the German language system, but not in French or English. And
the Arabic script contains diuerent glyphs for writing the Farsi and Urdu
languages. In the absence of language- specific rules, default language
system features apply to the entire script.

Another example is the hani script which supports China, Korea and
Japan. Here we have diuerent glyphs for the same Unicode codepoint for
diuerent language systems as can be seen for example in the ms Arial
Unicode font:
Script Tag: hani
Language Tag: zht, zhs, kor

Chinese traditional

Chinese simplified

Japanese

OpenType fonts with cff outlines
and aat support tables.

**

*********** Table Directory ************

**

version: 20308.33

numTables: 22

searchRange: 256

entrySelector: 4

rangeShift: 96

tag offset length checksum

--

BASE 364 456 6962C672

CFF 820 6720412 D234DEBC

DSIG 10240852 5788 EADEC4BC

EBDT 6721232 1636487 32BDCD3

EBLC 8357720 67148 883E371E

GPOS 8424868 14600 DD21703D

GSUB 8439468 185706 7F930AE3

OS/ 2 8625176 96 3814B65D

VORG 8625272 812 2BE8ACA

Zapf 8626084 442236 2736C019
cmap 9068320 276664 E31BA3BF

feat 9344984 340 81CD4A53
head 9345324 54 D3061EC9

hhea 9345380 36 8B5416B

hmtx 9345416 72546 D255AEAD

maxp 9417964 6 4F485000

morx 9417972 739840 496DB24
name 10157812 5060 3F369656

post 10162872 32 FFB80032

prop 10162904 3758 DA5761FF
vhea 10166664 36 74F5311

vmtx 10166700 74152 8EFBA4CC

appendix vi: opent ype font technology

7

The substitution of
vertical glyphs in Japanese
(ms Mincho).

Ligature in backing store (left) and
liga form (right):

f+i fi
Ligature in backing store (top) and
clig form (bottom):

a+f+t
ay

4.3 Features
A language system defines features, which are typographic rules for using
glyphs to represent a language. The typographic features define the
functionality of an OpenType Layout font and are registered in the
OpenType Layout tag registry at the Microsoft Typography homepage.
Font developers can use these features, as well as create their own (if they
find an application which uses them!)

Some examples of typographic features are:
– vert
This substitutes vertical glyphs in Japanes.

– init, medi, fina
A language system feature for the Arabic script substitutes initial, medial,
and final glyph forms based on a glyph’s position in a word.

Standalone ‘ha’

Initial ‘ha’

Medial ‘ha’

Final ‘ha’

– liga
Feature for using ligatures in place of separate glyphs.

– clig
Unlike other ligature features, clig specifies the context in which the
ligature is recommended. This capability is important in some script
designs and for swash ligatures. The clig table maps sequences of glyphs to
corresponding ligatures in a chained context (gsub lookup type 8). Fpr
example: the ligature glyph ‘ft’ replaces the sequence f t, except when
preceded by an ascending letter.

– kern
The kern feature is an example of a gpos feature, i.e. it modifies the
positioning of the glyphs. The kern feature is used to adjust the amount of
space between glyphs, generally to provide optically consistent spacing
between glyphs.

appendix vi: opent ype font technology

8

Other examples for gpos features:
Urdu layout requires glyph
positioning control, as well as
contextual substitution.

Correct:

Incorrect:

– Vertical.
– Horizontal.
– Size dependent kerning (via device tables).
– cross-stream kerning in the y text direction.
– adjustment of glyph placement independent of the advance adjustment.
– adjustments for pairs of glyphs (gpos lookup type 2 or 8).
– Support for left and right classes, and/or as individual pairs.

4.4 Lookups
Features are implemented with lookup data that the text processing client
uses to substitute and position glyphs. Lookups describe the glyphs
auected by an operation, the type of operation to be applied to these glyphs,
and the resulting glyph output.

4.5 gsub table
The gsub table contains substitution lookups that map gids to gids and
associate these mappings with particular OpenType Layout features. The
OpenType specification currently supports six diuerent gsub lookup
types:
1. Single

Replaces one glyph with one glyph. (vert, salt, …).
2. Multiple

Replaces one glyph with more than one glyph (ligature decomposition).
3. Alternate

Replaces one glyph with one of many glyphs(crcy).
4. Ligature

Replaces multiple glyphs with one glyph (liga …).
5. Context

Replaces one or more glyphs in context (clig …).
6. Chaining context

Replaces one or more glyphs in chained context (Swash alternates).

4.6 gpos table
The gpos table contains a powerful set of lookup types to reposition glyphs
relative to their normative positions and to each other. Glyph
positioning lookups work in two ways: by adjusting glyph positions relative
to their metrical space or by linking predefined attachment points on
diuerent glyphs.

These two methods are further divided into specific adjustment and
attachment lookup types that can be used to control positioning of
diacritics relative to single or ligatured characters and even to enable chains
of contextual positioning operations. The OpenType specification
currently supports eight different gpos lookup types:

appendix vi: opent ype font technology

9

Contextual positioning lowered the
accent over a vowel glyph that
followed an overhanging uppercase
glyph.

Wörter
Wörter

– A single adjustment positions one glyph, such as a superscript or subscript.
– A pair adjustment positions two glyphs with respect to one another;
kerning is an example of pair adjustment.
– A cursive attachment describes cursive scripts and other glyphs that are
connected with attachment points when rendered.
– A MarkToBase attachment positions combining marks with respect to
base glyphs, as when positioning vowels, diacritical marks, or tone marks in
Arabic, Hebrew and Vietnamese.
– A MarkToLigature attachment positions combining marks with respect to
ligature glyphs. Because ligatures may have multiple points for attaching
marks, the font developer needs to associate each mark with one of the
ligature glyph’s components.
– A MarkToMark attachment positions one mark relative to another, as
when positioning tone marks with respect to vowel diacritical marks in
Vietnamese, for example.
– Contextual positioning describes how to position one or more glyphs in
context.
– Chaining Contextual positioning describes how to position one or more
glyphs in a chained context.

4.7 Processing of features and lookups
After choosing which features to use, the client assembles all lookups from
the selected features. Multiple lookups may be needed to define the data
required for diuerent substitution and positioning actions, as well as to
control the sequencing and euects of those actions. To implement features,
a client applies the lookups in the order the lookup definitions occur in the
LookupList. As a result, within the gsub or gpos table, lookups from
several diuerent features may be interleaved during text processing. A
lookup is finished when the client locates a target glyph or glyph context
and performs a substitution (if specified) or a positioning (if specified). The
substitution (gsub) lookups always occur before the positioning (gpos)
lookups. The lookup sequencing mechanism in TrueType relies on the font
to determine the proper order of text-processing operations.

4.8 Ordering lookups (within the future tag)
The order of the lookup within the feature tag is critical. The lookup you
define first will take priority. For example: if you have two ligatures ta + ae
defined in your lookup table, with the ae listed first, and you type ‘tae’, you
would only get the ae ligature and not the ta, because the a is already
converted into the ae ligature.

tae tæ

appendix vi: opent ype font technology

10

A small part of the feature file which
excludes the fi ligature for the Turkish
language.

4.9 Ordering ligatures and conjuncts (within the lookup)
To ensure that ligatures and conjuncts are formed properly, one has to
order substitutions so that the ones with higher priority precede others
those with lower priority. It is also important to form the longer lookups
before the shorter ones.

When forming ligatures, the lookups need to be encoded as follows:
– The first substitution in a lookup maps the longest string of component
characters to the appropriate glyph; the next substitution provides
the glyph corresponding to the next longest string of characters; and so
forth. This is important because the search process through
the lookups terminates with the first match.
– For consonant conjuncts, full form conjuncts must precede half forms.

traffic traffic
For the fi & z ligatures, feature tag liga, if you order f + i –> fi before f + f +
i –> z the z ligature would not be formed, because the search process
stopped with the fi. When the ‘longer’ lookup is listed first, the z ligature is
formed correctly.

traffic trazc
Language dependency of features and lookups:

On the right is a (well-known) example for the language dependent glyph
substitution. It shows a small part of the feature file which excludes the fi
ligature for the Turkish language; in Turkish it is not allowed to form an fi
ligature because the dotless i has a diuerent meaning than the normal
dotted i.

appendix vi: opent ype font technology

11

feature liga {

sub f f i by ffi;

sub f i by fi;

lookup NOFI {

sub f f l by ffl;

sub f f by ff;

sub f l by fl;

sub f f j by f_ f_ j;

sub f j by f_ j;

} NOFI;

language TUR excludeDFLT;

lookup NOFI;

} liga;

Features for standard scripts
(Windows Uniscribe/otls). More
features are supported by InDesign
and other Adobe applications.

5. OpenType production with dtl FontMaster
As can be seen from the previous sections, OpenType is a rich specification
which allows thousands of possible combinations of language
lookups and features. Its quite obvious that writing a gui for the OpenType
tables is a huge task. The dtl FontMaster approach is trying to make it
quite easy to generate an OpenType font.
– The Opentype production is based on Adobe’s sdk.
– Currently only the otf production is supported (via Type 1 and cff).
– dtl DataMaster automatically generates as many features as possible.
– Advanced users can create their own set of features.
– No fancy graphic user interface.

In dtl DataMaster the otf production is essentially governed by two
files:
– The Character Layout File, which is described in Appendix iii.
– The OpenType Feature File.

Language based forms

Typographical forms

Positioning features

Feature

ccmp

liga
clig

kern
mark
mkmk

Feature function

Character composition/
decomposition substitution

Standard ligature substitution
Contextual ligature substitution

Pair kerning
Mark to base positioning
Mark to mark positioning

Layout
operation

gsub

gsub
gsub

gpos
gpos
gpos

Required

x
x

appendix vi: opent ype font technology

12

