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Introduction

In this highly energetic and volatile era of rapid developments
in the field of Information Technology, it’s good to honor those
who stood at the cradle of these developments, as it is also
good to stimulate present-time innovative contributions.

The Dr. Peter Karow Award for Font Technology & Digital
Typography has been established for this purpose, and it focus-
es on two mutually related matters that perhaps objectively can
be considered small elements within the field of Information
Technology, but which have a huge impact on the way we com-
municate: font technology and digital typography.

More than forty years ago Dr. Karow began to digitize the
outlines of characters using an Aristo tablet with lens cursor,
which resulted in the ikarus format. For roughly two decades
the ikarus format was the de facto standard for digitizing type.
Subsequently, letters were mostly manually digitized before
the rise of desktop publishing. With the ‘democratizing’ of dig-
ital typography every aspect of the related market changed,
from the manufacturing of type setting machines to the pro-
duction of fonts.

In the wake of Adobe’s PostScript format, a new genera-
tion of relatively low-cost Bézier-oriented font tools for per-
sonal computers (starting with Jim von Ehr’s Fontographer in
early 1986) made manual digitizing less obvious.

Nowadays there are a wide range of inexpensive or even
free powerful font tools available, and never before in the short
history of digital type has it been so easy to produce and dis-
tribute fonts. And never before have the options for digital
typography been as sophisticated as they are nowadays. The
exciting current development of webfont technology and the
application of fonts in apps and e-books assure us that even
forty years after fonts became digital, the end of innovation is
still nowhere in sight.
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In the course of time the importance of manual digitizing may
have been diminished a bit, but to this day it is still used in
IkarusMaster, a part of the dtl FontMaster suite that is devel-
oped at urw++ Design & Development GmbH under supervi-
sion of Dr. Jürgen Willrodt. This set of tools finds its origin in a
cooperation between urw (and its later successor urw++) and
the Dutch Type Library, which started back in 1991, when I was
introduced at the Hamburg-based firm by my friend and col-
league Albert-Jan Pool, who was running urw ’s font produc-
tion back then. In that year I met Dr. Karow for the first time and
I recall, above all, his generosity and hospitality when, as a
fledging company, dtl needed every form of support it could
get. It was especially Peter Rosenfeld, at that time manager of
the urw fontstudio and who later became Managing Director
of urw++, who immediately noticed the value and potential of
dtl’s type library and who took the company under his wings.

Although this introduction is not really a place to plead for
manual digitizing, I think that drawing by hand and hence man-
ual digitizing is still, in many cases, the best start for a digital
typeface, if only because it reduces the pace a bit leaving more
room for contemplation. My opinion on this seems to be shared
by others in the field, evidenced by the growing number of
requests we receive at dtl and urw++ for the support of dif-
ferent tablets with lens cursors.

But manual digitizing is only one of the numerous contri-
butions that Dr. Karow made to digital type and typography,
and one can’t think of many technological aspects that have not
been investigated or described by him during his long career.
From hinting to grayscaling, from kerning to optical scaling,
from Kanji-separation to paragraph composition, et cetera, et
cetera, his influence in all of these can be seen in this booklet.
For the paragraph composition he developed the hz-engine
program together with Hermann Zapf, which was implement-
ed by Adobe in InDesign in 1995.
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The cooperation between the scientist, Dr. Karow, and the 
very skilled type designer Zapf was very fruitful, and a good 
example of how font-related technology was and is developed. 
Based on my PhD research at Leiden University on the origins 
of harmonic and rhythmical patterns in Latin type (one of the 
first times I gave a talk on this subject was in June 1993 at a 
meeting of the Dutch TeX users group), I think it is plausible 
that movable type was developed by craftsmen and entrepre-
neurs like Johannes Gutenberg and Nicolas Jenson as a ‘font 
format’, i.e. a technological vehicle for type designs, which was 
as much adjusted to the then existing aesthetic preferences, as 
that it created new ones. Probably it was the result of an inter-
action between scientists/technologists and designers, like in 
case of forenamed hz-engine program.

In an e-mail exchange last year, Adobe’s Senior Manager of 
Type Development, David Lemon, wrote to me: ‘It seems to me 

that the gre at le aps forward in the history of type and printing 

have stemmed from a sort of dialog between technology and art. 

Each figure in that history may have been more artist than tech-

nician or more technician than artist, but they all had both qual-

Peter Karow and
Hermann Zapf at the
Rochester Institute of
Technology in 1989
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ities. The great designers were necessarily also master crafts-
men, fully in control of the technologies they used. And the great
inventors were never mere technicians; their inventions arose
from seeing opportunities that new technology could address – so
an awareness of the artistic aspect was a precondition for the
invention.

In the case of PostScript, John Warnock had strong connec-
tions to the world of graphic arts and publishing. John’s wife was
a professional graphic designer (who created Adobe’s original
logo), and when John got money from Adobe’s success he spent
quite a bit of it on rare books. For example, when he acquired a
Kelmscott Chaucer edition, he brought it to Adobe so the type
team could enjoy looking through it. That’s not something a sim-
ple “computer scientist” would do.’

This acknowledgement of the interaction between tech-
nologist/scientist and artist characterizes the Dr. Peter Karow
Award. Thus, it will not come as a surprise that, at Adobe, there
was a keen interest in the award, which resulted in a consider-
able support, both organizational as well as financial, for the
third Dr. Peter Karow Award, to be presented on Saturday 12
October 2013 at the ATypI conference in Amsterdam. What es-
pecially appealed to Adobe, is that the purpose of the award
is not only to honor, but also to stimulate. It is not a lifetime
achievement award as such, although it can be presented to
someone whose achievements span a lifetime, of course.

The Dr. Peter Karow Award is presented once every five years
to a person who makes an exceptional and innovative contribu-
tion to the development of digital type and typography relat-
ed technology. The award was established by the Dutch Type
Library in 2003. In that year, the first award was presented to
Dr. Karow himself at the third dtl FontMaster Conference at
Castle Maurick in the Dutch city of Vught.

It took an extra year (six years) before the second Dr. Peter
Karow Award was presented to Thomas Milo at the fourth dtl

i n t r o d u ct i o n

�



FontMaster Conference at the Steigenberger Kurhaus Hotel in
The Hague in November 2009.

Thomas Milo and his company DecoType developed ace,
which is an acronym for ‘Arabic Calligraphic Engine’, a new ad-
vanced technology for Arabic text setting, a language group
which requires a far more sophisticated approach than systems
like the Latin script, based on a thorough analysis of the Arabic
script. Not only did Milo’s typographic research serve as the
fundament for the ace technology, clearly it also formed a basis
for the development of the OpenType layout model, although
this is a less known and acknowledged fact.

Thomas Milo’s contributions to the field of digital type and
typography are clear, and he rightfully deserves a position next
to Dr. Karow. As one consultant of the award jury stated: ‘Dr.
Karow made type digital in a way we know today (description of
shapes as outlines, rasterization, hinting, greyscaling, plus page-
layout improvements). Thomas Milo added the “smartness”
needed for scripts that ask for a more sophisticated behavior than
Latin.’

The award was presented to Thomas Milo by Dr. Peter
Karow himself and in presence of Dr. Renk Roborgh, Director-
General at the Ministry of Education, Culture and Science. The
ceremony followed on an inspiring talk by Milo on the history
of his company DecoType and the development of the ace
technology. Milo underlined that without the invaluable assis-
tance and support of his colleagues at DecoType, who are his
wife Mirjam Somers and his brother-in-law Peter Somers, his
smart font technology would not have emerged.

The third Dr. Peter Karow Award has been unanimously
awarded to Dr. Donald E. Knuth by this year’s jury, a group
composed of Dr. Peter Karow, Thomas Milo (DecoType),
David Lemon (Adobe), Peter Rosenfeld (urw++), Dr. Jürgen
Willrodt (urw++), and chairman Frank E. Blokland (Dutch
Type Library).
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Dr. Knuth’s highly valuable contributions to digital typography
and font technology are numerous. Every reader of this book-
let will be aware of the existence of TeX (from Greek ‘techne’
= art/craft, the stem of ‘technology’), a powerful typesetting
system, especially suited for technical texts. Extensions of TeX
are still the standard tools for composing most scientific texts.
Equally famous is his metafont, a computer language for cre-
ating letterforms by mathematical means, which blazed a trail
for the future of parameterized type design that is still being
explored today.

Like Dr. Karow and Thomas Milo, Dr. Knuth developed
key pieces of the foundation of digital typography. And like
Dr. Karow, Dr. Knuth came to value a close working friendship
with Hermann Zapf, starting even before they collaborated on
the Euler types in Metafont, for the American Mathematical
Society. Dr. Knuth’s appreciation of the calligraphic under-
pinnings of type is also evident in the collection 3:16 that he
curated and published, asking calligraphers around the world
to apply their art to an arbitrary set of verses from the Bible.

With Prof. Charles Bigelow he established a Masters
course in digital type at Stanford University, a joint production
between Stanford’s Art and Computer Science departments
that sadly was able to last only two years. Three of the gradu-
ates of the Stanford M.S. Digital Typography program worked
at Adobe: Carol Twombly, Daniel Mills, and Cleo Huggins.

In an interview of Charles Bigelow conducted in 2012 and
published Summer 2013 in tugboat, Bigelow explains that
Dr. Knuth’s mathematical approach of generating type didn’t
imply that it was restricted from an artistic point of view:
‘Although Knuth says his goal was to imitate a metal typeface
called Monotype Modern 8A, Computer Modern has many origi-
nal ideas underlying its forms. In visual form, the basic seriffed
version of Computer Modern did imitate Monotype Modern, but
in conception and technical implementation, Computer Modern
was original.’ In the same paragraph he praises Dr. Knuth’s
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non-commercial approach: ‘It is noteworthy and commendable,
too, that Knuth published all the Metafont code for his designs.
For commercial reasons, most typefaces are marketed with intel-
lectual property restrictions, but Knuth saw his typographic work
as part of a greater goal, the publication of scientific literature
and the dissemination of knowledge. He did the same with his
TeX system for mathematical composition, publishing the source
code for wide usage. A paragon of enlightened generosity.’

In an e-mail to me dated 24 August 2013 Dr. Karow summarized
Dr. Knuth contributions to digital typography: ‘TeX was written
by Donald Knuth and released in 1978 when DtP was yet not in-
vented. Together with the Metafont language for font description
TeX was designed with following goals: to allow anybody to pro-
duce theses and even books with typographical quality using a
minimal amount of effort, and to provide a system giving the
same results on all computers, now and in the future. The AMS
Euler was designed and created by Hermann Zapf in 1980 – 81
with the assistance of Donald Knuth and added to the system.

After 1980 all this went around the world installed on all
larger computer systems at the Universities and was the first
commonly used “DtP program”. The first time, students could
write their theses without the help of secretaries, typewriters,
glues, scissors and copies. The paragraph justification was excel-
lent, never achieved before, also the typography of formulas.’

In the MetAfontbook, which was first published in 1986, there
is a dedication that clearly underlines the forenamed interac-
tion between scientists and type designers: ‘To Hermann Zapf:
Whose strokes are the best’.

Frank E. Blokland, August 2013
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Summary

Digital Typography transpired in type design and text layout.
It has changed font production and text composition in their
entirety.

I was involved in many of the demands for digital typefaces
which came into existence from 1972 through 1997. ese is-
sues included formats, variations, interpolation, rasterizing,
hinting, autotracing, grayscaling, and element separation.

Modern text composition was mostly inVuenced by pro-
grams such as WordStar, Word, PageMaker, QuarkXpress, and
FrameMaker, which replaced writing, typesetting and printing
in offices on the one hand and at home on the other. In current
times, text is composed much less manually than in the past,
but not as digitally generated as its potential.

Within modern text composition, digital text is a special
part that should proceed without manual assistance and hu-
man layout. Up to now, the milestones were these: kerning,
optical scaling, paragraph composition (hz-program), chapter
composition (chapter Ut), and digital ads.

As is known, a good deal of engineering endeavors has
already been implemented in regards to digital typography.
However, distinct challenges still exist such as reUnements to
autotracing, autohinting, element separation, kerning, optical
scaling, chapter Ut, and automatic text composition. Many so-
phisticated tasks are still le to be executed, they belong more
to artiUcial intelligence than to engineering.
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Digital Typefaces

When did typefaces become digital?
At the end of 1972, I met Walter Brendel38 –my Urst client–
and started to ‘crunch’ typefaces. I began to digitize the out-
lines of characters using a digitizing tablet. I performed this
similarly to the people at the company of Aristo in Hamburg31,
where they digitized forms of electronic layouts, automobiles,
and ships (see Ug.1).

I added these basic features: [1] four sorts of control points
(sect: start, edge [corner], curve, tangent), and [2] editing a
single control point somewhere in between. e connecting
line was calculated by a spline interpolation (see Ug.2, le).
is editing-feature is fundamental for automatic reUnements,
(re)design on screens, and the generation of variations like
‘shadowing’ and ‘contouring’.

At that time, creative typesetting professionals produced vari-
ations manually using their photographic experience and a
photo-typesetting machine to make fonts with contours and
shadows (see below remark 1). Naturally, shadowing as well
as contouring were my next features, which I started on 26
February 1973. is date might be regarded as the birth of

fig. 1
Typical desktop in the
seventies with digitizer
tablet, ‘mouse’, keyboard
(below), direct vDt,
alphanumeric terminal,
digitizer electronic
(above)
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‘digital typefaces’: new forms were generated automatically
(see Ug.2, right).

I spent a lot of time trying to generate a lighter and/or heavier
typeface version out of one master. I attempted a lot of tricks,
compromises and heuristic rules to achieve it. I never got it.
My programs crashed quite oen and generated substan-
dard looking results. at inVuenced my decision to call the
soware Ikarus15. However, on the 25 May 1973, my partner
Gerhard Rubow34 proposed to use two masters and interpola-
tion, which immediately worked well, but needed twice the
amount of work for input.

In the beginning I said to my partners: ‘I can program it in
two months.’ It took me four years. So, be cautious with pro-
grammers: their estimates are usually wrong. Perhaps as a rule,
these estimations should be taken to the next higher time unit
and then multiplied by two: 2 months —> 4 years.

ese days, everyone regards all fonts on computers as
digital fonts since they are stored in digital formats such as
OpenType. In the early seventies, we had long discussions with
famous designers. ey argued that pure mapping from ana-
logue to digital is not changing the basic quality of a typeface
(old properties), namely its type, appearance, effect, expres-

fig. 2
ikAruS-Format was
started 1972 (left).
Contouring used to make
Outline and Inline ver-
sions, shadowing and
contouring used to make
Relief and Drop Shadow
(right)
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sion and congeniality. erefore they asserted that the type-
faces only had digital images and were therefore still analogue.
‘Digital’ at that time was regarded as a pseudo-property. e
designers were anxious and envisioned their typefaces as los-
ing their luster and personalities once they were ‘crunched by
numbers’.

Today, the property ‘digital’ is not only accepted but al-
so embraced. It serves as an additional characteristic which
doesn’t interfere with the old properties and holds an extreme-
ly high signiUcance regarding a font. It allows and creates new
and important functions which did not exist before.

Formats

In 1960, the company of Aristo31 introduced stroke fonts in
their Perthronic controller –at Urst for the characters 0…9–
in order to inscribe the drawings on their plotters for the
design of buildings, cars, ships, and surveying. Until the late
eighties, stroke fonts were also used on graphic display termi-
nals (direct vdts, storage displays). Tektronix was consider-
ably successful with their devices. Stroke fonts consist of just
one line; the ‘stem thickness’ is the thickness of the drawing
pen or electronic beam respectively.

Bitmaps started as dot matrices, which computer scientists
needed for line printers, and much later for dot matrix printers
and vdts. Typical sizes were 6×8 bytes for Latin upper case
characters or 16×16 for Kanji in Japanese. e smaller the dots
became in line printing, the larger the dimensions of the ma-
trices grew.

With the invention of the Digiset by Rudolf Hell in 1965,
typefaces were digitized for the Urst time. No additional ideas
were put into place other than using them 1:1 for typesetting on
the Digiset, scaled linearly and displayed at resolutions be-
tween 1,000 and 2,400 dpi. e dot matrix became a bitmap,
stored as run length format with dimensions of 50×60, 100×
120, 200×240, 400×480, and 800×960.
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Since the invention at Xerox in 1971, laser printing has devel-
oped quickly. Xerox, ibm, Siemens, Fujitsu, Canon, and others
started office automation. All manufacturers –and I emphasize
all– introduced their own formats for bitmaps (or Bytemaps).

At the end of 1972, I started with the ikarus-format11,
a high-resolution description of the outline of characters as
mentioned before (see Ug.3).

In May 1973, the so-called Rockwell patent was Uled. It
claimed code compression for the run length code by using an
outline described piecewise by vectors and circle segments as
a vector format. Among other inventions, it claimed linear scal-
ing from smaller to larger point sizes. A patent was given on
that –unbelievable! Around the same time others introduced
their own vector format to reduce the needed storage and to
save costs.

In the late seventies, John Warnock worked on the Post-
Script language to describe the layouts of printed pages. In

fig. 3
Six representations of
typical formats (2 rows,
from left to right): bit-
map, run length, vector,
PostScript, element
separation, Metafont
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1983, Adobe introduced the PostScript format for typefaces. In
1987, Apple came to me asking for help with a new format. Two
years later they Unished the development of the TrueType for-
mat, which was introduced by Apple and Microso in 1991.
Neither liked paying for the licenses in order to use PostScript
from Adobe.

Aer 2000, stroke fonts had a revival36 as global fonts,
which can consist of 50,000 characters or more. A stroke font
reduces the storage needed by more than 80%. It does not need
to incorporate things such as serifs and other embellishments
of usual typefaces. Storage (=money) is still of high interest in
the Ueld of navigation systems and multilingual presentation
of geographic maps.

In 2005 at a conference in London, David Lemon received the
Urst-ever Linotype Font Technology Award for his decades-
long work as a font developer: ‘Sumner Stone hired David
Lemon to help Adobe turn typefaces into fonts. At Adobe,
David became an expert in Type 1 font development, then mul-
tiple master fonts, and eventually had a chance to help direct
the development of OpenType format during the years 1996
through 1999. As manager for the Adobe type team, David
continues to work for the synergy of art and technology.’30

And so, Unally, formats are recognized as part of digital type-
faces. OpenType is the consummation of continuous devel-
opment.

Variations

First of all, there were contouring and shadowing. Contouring
could be inside or outside of the area, which the master char-
acter covers. It could be generated twice or even more oen
with varying thicknesses of the contour lines10. Shadowing
could be implemented in any direction; however, people oen
constructed a shadow which had a length less than the stem
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thickness and a direction of minus 45° (to the right and down-
wards: a drop shadow).

Italicizing gives a typeface the version ‘italic’. Of course, a
real italic typeface is a new design and probably could not be
generated by a program. However, there are numerous slanted
versions of fonts as italic which are in use these days, and some
of them have become quite famous. Statistics show: for italic,
the angle 12.5° is taken quite oen, and 7° up to 20° seem to be
tolerable22 (see Ug.4).

You can replace all sharp corners of the characters by round
segments. We called this rounding.

When you displace the control points of a character arbi-
trarily you get a contour shape, which is more or less distorted.
We called this variation antiquing. Subtle distortions enable
the characters to look like used hot metal characters, while
large distortions give the appearance of frozen characters. One
of the innumerable versions we referred to as ‘IceAge’.

Interpolation

Interpolation needs two statements in a loop, which runs for all
digitized points of a contour. An outer loop runs for all con-
tours of a character, and a third for all characters of the two
masters of a typeface family. e statements are:

fig. 4
Italicizing (left) creates
bad slanting effects, the
ikAruS software corrects
them automatically.
Rounding (middle)
rounds all corners of the
characters. Antiquing
(right) destroys deliber-
ately smoothed contours,
the generated font was
called: ‘IceAge’
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Xnew = (Xmaster2 −Xmaster1)*factor+Xmaster1
Ynew = (Ymaster2 −Ymaster1)*factor+Ymaster1

X and Y are the coordinates of the control points in a two-di-
mensional plane, and the factor could be set between 0,…1.
Additionally, factors between -0.2,…0 will work for intrapola-
tion and factors between 1,…1.2 for extrapolation. A factor of
0.5 generates a typeface in the ‘middle’ of the two masters.
When the weight of master1 is ‘normal’ and the weight of mas-
ter2 is ‘bold’, the interpolated version is referred to as ‘demi-
bold’ (see Ug.5).

Interpolation is exceedingly simple for a programmer; how-
ever, it is a colossal tool for professional typeface production
at the places of manufacturers for typesetting equipment.
Interpolation became the basis for large font families. Some-
times there were up to ten weights in a family. e managers
said, ‘interpolation only eats electricity, no spaghettis’.

One should know that the drawing of a new weight of a
Latin typeface consists of at least a month of work or 170 man-
hours. However, for a Kanji font it takes 100 months of 170
man-hours. erefore interpolation was and is an enormous
point of consideration in countries like China, Japan, and
Korea (cjk).

fig. 5
Interpolation (left)
between two weights of
a typeface, interpolating
hybrids (right) in be-
tween a light roman
(antiqua) and a bold sans
serif (grotesque) font
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When one takes a sans serif (grotesque) font as master1 and a
roman (antiqua) font as master2, then one interpolates hybrids
(see Ug.5). Most people don’t Und these very appealing.

For many years, only font designers and manufacturers
used interpolation. It was a special function in programs like
ikarus, Fontographer (introduced 1986 by Jim von Ehr) and
other soware. In 1987, it was the now well-known company
Adobe which put interpolation into the hands of all users by
providing MultipleMaster fonts.

Rasterizing

Human eyes can resolve more than 600 dpi (dots per inch). A
dot represents a displayed pixel or any other entity consisting
of the smallest element of representation. For coarse displays
with 60–120 dpi, effects of rasterizing show up immediately
and create disorientation –even on printers with 300 dpi.
ese effects aren’t visible on devices with 1200 dpi or Uner
resolutions13.

In November 1975, I started rasterizing fonts for the fa-
mous Digiset of the company Hell (see below remark 2). As
long as the resolution of the device is high (600 dpi or more),
arbitrary effects of rasterizing don’t matter very much (see
Ug.6). High-end typesetters can work with those ‘bad scans’.
But manufacturers like Hell and Linotype even edited their
high-resolution images of characters by hand, wanting per-
fection and the elimination of a selling argument for the
competitor.

Laser printers had low resolutions (180 up to 400 dpi).
ey needed hand-edited bitmaps of typefaces. In office auto-
mation the big printers didn’t need a lot of typefaces or point
sizes. ese printers were relatively expensive and therefore
generated the money to pay for the editing costs of bitmaps.
erefore, office automation didn’t lead to any improvements
in rasterizing worth mentioning.
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e real impact came from desktop publishing and ‘Triple A’:
Apple, Adobe, and Aldus. One wanted everything ‘wysiwyg’
(what you see is what you get). e vdts (video display termi-
nals) had a resolution of about 60 dpi and later 120 dpi (see
below remark 3). ey should have been used as raster scan
vdts similar to the famous Xerox Star in 1980. One needed
many typefaces and many point sizes!

All point sizes had to be hand-edited in order to obtain
reasonable representations for 9, 10, 12, 14, 18, and 24 pt. fonts.
In the beginning, in order to reduce the editing job, one se-
lected around 11 typefaces: Helvetica, Times, Courier, Symbol
(the 13 ‘core fonts’), Helvetica narrow, Palatino, Century
Schoolbook, Avant Garde, Bookman, Zapf Chancery, and Zapf
Dingbats. Besides the 3 typefaces Symbol, Zapf Chancery, and
Zapf Dingbats, all of the other 8 typefaces had four versions:
normal, bold, italic, and bold italic. Altogether there were

fig. 6
Bad rasterizing effects
may occur (left side
of left illustration).
Comparison of coarse
with fine rasterizing
(right): the coarser the
grid, the narrower the
scope of design
(resolution funnel)
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3+8×4=35 fonts, and 35×6=210 Bitmaps. Quite a lot. A com-
promise for the beginning, of course, but not for long.

Hinting

Already in 1976, I had started to automate the hand editing of
bitmaps because our company had spent a lot of time produc-
ing bitmaps for low resolution (see below remark 4).

e ikarus program put out a bitmap per character per
point size per typeface per version, formatted for one of the
various types of laser printers or typesetters (see Ug.7). Need-
less to say, it generated the bitmaps slowly. We never thought of
doing it ‘on the Vy’.

Nevertheless, Ikarus performed auto-hinting. At Urst its abil-
ities were limited and it could only Und stems and bows. Step
by step we improved it and Unally IkarusM (the Macintosh
version) could Und most all of the 17 hints automatically (see
Ug.8). Here again we met with artiUcial intelligence (see below
element separation), which has yet to be completed.

I taught rasterizing and our version of ‘hinting’ in order
to avoid hand-editing and storing bitmaps to Compugraphic
and Linotype (Bitstream) in 1980. In 1982, the ikarus program
made its way to the former company Autologic near Los
Angeles –and to its production manager Sumner Stone.

fig. 7
Rasterizing 3 different
fonts at 9 pt, 18 pt, 36 pt
for 72 lpi without (left)
and with hinting (right)
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In 1983 Adobe announced PostScript. I met with John
Warnock the Urst time during the ATypI working seminar at
the Stanford University. A year before, he and Chuck Geschke
had founded Adobe. ey knew best what desktop publishing
meant for PostScript: many characters and many point sizes
and many typefaces, that hand editing didn’t have a chance,
and that the rasterizing should be fast enough to allow it ‘on
the Vy’ in order to avoid expensive memory for the equipment
in dtp.

In 1983, I told John Warnock about the ikarus system
at Autologic, its auto-hinting and their type director Sumner
Stone. In 1984, Adobe hired him. He was then at Camex
in Boston, aer Autologic. With him, John Warnock and Bill
Paxton made the real invention: hinted fonts rasterized on

fig. 8
8 hints in the beginning
(1981, ikAruS) 17 hints
later (1987, PostScript,
TrueType)
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the 3y. Since 1985, hinted fonts could be sold by Adobe and
rasterized on its PostScript rips. Naturally it became a big
success.

In 1988, Apple sent some soware engineers to urw in
Hamburg in order to learn about rasterizing and hinting. Lat-
er in 1990, we made our own rasterizing soware Nimbus17,
which existed among others like those of Bitstream and
Compugraphic who all learned from us.

Autotracing

Aer the ikarus system was established in the Ueld of typeset-
ting and printing, many managing directors came to us and
asked for the automation of hand-digitizing, especially the
Japanese. eir companies had stored lots of characters as large
high quality images. Quite naturally, they wanted to scan and
convert them into outlines automatically.

Another impact came from users of illustration programs
like Illustrator and FreeHand. ey also wanted to acquire the
outlines of scanned objects.

In 1980, we started autotracing and called the soware
‘Outliner’39. We tried it several times. Step by step, year by
year. Every time, we believed we had a better idea as the solu-
tion. Every time, we underestimated the task (see Ug.9).

Scanning is full of arbitrary local effects, especially for cor-
ners and Vat curves. Design decisions must be made: [1] is this
scanned corner still round or already a sharp corner, [2] is this
Vat curve still a curve or already a straight stem, [3] is this an
acutely angled joining of strokes –a so-called ink trap– or not,
[4] is this a curve or a Vat joining of stems?

As human beings, we are biased by our own ability to recognize
shapes and especially to guess the details of a shape and to
make design decisions correctly. We can do it fast and think
that it is easy. We all know that we calculate much slower
than computers. And here begins our misunderstanding. We
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believe therefore that computers can make design decisions
(pattern recognition) as fast as man can do it or even faster. But
that is not true, at least not today.

Since 1969, I was involved in pattern recognition, ocr, and
image processing. Autotracing belongs to this chapter on arti-
Ucial intelligence. Programming work and the experience of
more than one generation is needed. Today in autotracing, we
have achieved a certain level, and yet we are still far away from
what could be achieved in the future.

Grayscaling

e line printers of IBM were dot matrix printers for all of those
years. e VDTs could only write in one character size, and
sometimes only using the upper case character set. All pro-
grammers were used to it at the time, they were happy to have

fig. 9
Autotracing should dis-
tinguish between straight
lines and flat curves,
corners should be recog-
nized either as sharp,
or round or as narrow
curves, and finally
autotracing should find
tangential control points
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achieved the Urst representation of various point sizes and
typefaces in DTP.

Looking at the Xerox Star in 1980, then at Apple’s Urst Lisa
in 1983 and Macintosh in 1984, we saw the jagged bitmap rep-
resentations of characters. A group of people argued against
grayscaling43, some called it fuzzy2.

In 1980 John Warnock40 worked on the display of charac-
ters using gray level sample arrays. In 1985 Avi Naiman32 pub-
lished his model for grayscaling.

I started grayscaling in 1981, not in order to achieve a
better VDT, but to build a video terminal for prooUng type-
setter output without wasting Ulm. Memory was expensive and
limited at that time. In 1984 one could only dream of having
more memory than 128 KB. erefore, I wanted it as additional
equipment to Hell’s Digiset (see below remark 5).

Normal TV guided me. I took a picture of a piece of print-
ed paper with a video camera in order to get a grayscaled rep-

fig. 10
The left column is
bitmapped, the right is
grayscaled. Especially at
lower pointsizes, the
grayscaled text is much
easier and faster to read
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resentation of text with 9 TV-lines corresponding to 9 pt text at
72 lpi. I saw that a very simple method would do it: generating
a graymap by converting 4×4 Une pixels. 2×2 is too coarse,
8×8 is not necessary.

In 1993 we Unished the soware SceenMaster19|21 that could
generate more than 10,000 grayscaled characters per second
on a Macintosh –again on the Vy (see Ug.10).

For a long time in DTP, people were not interested in
grayscaling because of additional costs for memory and addi-
tional computation time. Relatively late –meanwhile comput-
ers had much more memory and were much faster– gray-
scaling came in 1994 to Adobe as well as Microsoft3. In 1995
grayscaling became an integral part of Acrobat and ATM. Today
it is the standard.

Element separation (Shape components)

In 1975 Philippe Coueignoux6, a student of William Schreiber
at MIT– used shape components (a part of element separation)
in one of the Urst fully digital typesetter controllers. It is the
earliest work known to describe typographic characters by dig-
ital shape elements (see Ug.3, row below, in the middle).

In 1979, Donald Knuth published Metafont, the next in-
novation done in the Ueld of parametrizable fonts25|26|28.
e main components such as horizontal, vertical, diagonal
strokes, and round parts are described as the path of a pen with
given orientation and pen width. A sequence of them with
individual pen stresses, positions and directions describes a
character and generates its outline.

In 1998, Uwe Schneider37 published his work on ‘InUni-
font’, an object-oriented model for the hierarchical composi-
tion of letterforms in typeface design.

In 2001 Roger Hersch and Changyuan Hu, following Hu’s
publication in 19985, published a proposal for a new, highly
Vexible font description using assemblies of parametrizable
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shape components. eir system can derive fonts that vary in
weight, condensation, and shape.

In 1990, URW started collaboration on element separation
with the company of Fujitsu. Jürgen Willrodt42 and I aimed
at these aspects: computer-aided design of Kanji, reducing
the needed storage space, and speeding up the rasterizing
of Kanji. We separated Kanji into elements, elements into
strokes, and strokes into parts. We programmed tools to disas-
semble and to assemble them.

is looks like an easy task, but it isn’t. Many Kanji char-
acters –especially those of bolder fonts– have elements and
strokes that overlap. Naturally, the parts of strokes are con-
nected. erefore, it took a lot of programming to implement
all of the functions which were needed to get the right locations
for separation and smooth junctions for the assembly of Kanji
without interactive assistance.

Separation needs recognition of parts similar to auto-
hinting, and the opposite –the assembly– has to compensate
those parts of the counter for discontinuities where parts have
been put together.

e next challenge was to instruct a program to decide
typographically whether parts are the same or strokes, or
whether elements are the same. Again it turned out that we
wanted to automate something, which is relatively easy for
a designer, but belongs to artiUcial intelligence in computer
science. It ended up as a big success, but also with a lot of
compromises with respect to automation of design decisions
(see Ug.11).

Perfect element separation belongs to artiUcial intelligence.
Moreover, on the one hand it will contribute to the computa-
tion and production of pretentious handwriting, and on the
other to the reading of human handwriting.
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Digital composition

When is text composition digital?
Great fundamental changes happened to text composition in
comparison with the analogue situation: text editing, text tem-
plates, animation, and others. Editing was really annoying
when changes to a large typewriter document were necessary.
People had a lot of work to do in order to write a new document
based on text already written in other forms of context.

fig. 11
The separation of Kanji
characters into elements,
strokes, and parts worked
quite well. It saved stor-
age space and served to
repair arbitrary effects of
hand-drawing
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Now there are many tools in the menus, also many powerful
‘assistants’. Some of them never show up, but rather they work
like wizards in the background. Text composition is still done
manually, but it is quite facilitated. However, the text is not
composed digitally.

Digital text –in the sense as I see it– is composed by pro-
grams without manual assistance. It takes pure text and a
composition model as input and then generates the text and
its layout (typography) automatically. Here are the following
components:

Kerning
In hot metal printing, kerning had to be created by using pre-
designed ligatures for ‘’, ‘U’, and so on. In photo typesetting
kerning was created on a broad basis. One generated it manu-
ally or used kerning tables to change the individual distance
of pairs of characters7. David Kindersley Uled a patent in
196523, but he was not very successful with his system.

Together with Margret Albrecht I started automatic kern-
ing13 in 1980. We wanted to save money because the gener-
ation of kerning tables along with le and right side bear-
ings took a lot of time in our typeface production. As in other
cases of artiUcial intelligence, we had to go through several
approaches throughout the years until 1987. We mixed pro-
grammed ideas and heuristic parameters gained by processing
a lot of existing kerning tables manufactured by different com-
panies. We expanded kerning to get overlapping and blending
of characters in tightly composed words20 (see Ug.12).

In 199316, our program could ‘kern’ 15,000 characters
per second on a Macintosh at that time. erefore, we called
it ‘kerning on the Vy’. It Unally worked with digital text com-
position. In 1995, ‘kerning on the Vy’ was implemented in
InDesign by Adobe.

‘Kerning on the Vy’ kerns better than a human being can
do with respect to one typeface and all its various applications.
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is has statistical reasons; human beings are biased in regards
to their actual aspects and impressions. However, with respect
to one speciUc word such as a logotype written out of a special
typeface, some designers may kern better.

Here begins the area of taste. And as we all know, we can
discuss taste endlessly. I am not astonished that the US Patent
Office Uled patents on kerning matters recently4|33. Still, it is
possible that kerning could be improved (see Ug.13).

fig. 12
Kerning can be regarded
as a power that repulses
characters the nearer
they come to each other,
and that attracts charac-
ters the farther they get
from each other (left).
Kerning can be used also
to calculate character
positions for overlapping
and touching of text

fig. 13
Kerning supports the
writing of different
pointsizes (6 pt, 12 pt, 36
pt, 72 pt from top to bot-
tom): the left column is
without, the right with
kerning
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Optical Scaling

In hot metal printing, optical scaling was usual9. In any case
one had to cut the point sizes individually, so it was a matter of
knowledge, but not of money. is changed when photo type-
setting came up and the possibility of linear scaling came into
existence. Optical scaling didn’t play a role in the beginning of
DTP, however, a lot of people wrote about it1.

In 1991 at URW, I made the following approach for text fonts:
e smaller the type size:

1. the wider the composition
2. the thicker the strokes
3. the broader the characters, especially the lowercase.

e larger the type size in titles:
1. the more compact the composition
2. the thinner the strokes, especially the hairlines
3. the narrower the characters, especially the lowercase.

SimpliUed, one applies the rule that space and stroke width of
light fonts (text fonts) are reduced or enlarged by 7% on the av-
erage if the point size is enlarged or reduced by a factor of 218
(see Ug.14). For bold fonts the opposite is true.

To my knowledge, optical scaling was not employed for
bold fonts in the past because they weren’t (and still aren’t)
used very oen, and if so, they were cut just for these special
cases in certain point sizes as a special effort.

Optical scaling is le for reUnement and artiUcial intelli-
gence. Some unique individuals may not need it. But among
us normal readers the following is true: linear scaling isn’t
sufficient, we want optical scaling as an intrinsic quality of text
composition.
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Paragraph Composition (hz-program)

e hz-engine –developed with and named aer Hermann
Zapf 14|44 – uses a justiUcation per paragraph system24|27,
along with ‘kerning on the Vy’ and expanding/condensing of
characters in order to obtain margin lines for a column that is
optically straight (optical margins), and achieve typeset spaces
among words within lines of text that are fairly constant in
order to avoid rivers and creeks.

Rivers run vertically through poorly spaced words in con-
secutive lines of text when the spaces between the words have
the same space or a greater space than the distance between the

¶
fig. 14

Different pointsizes,
which have been
generated at the same
size for the purpose of
comparison



d i g i ta l t y p o g r a p h y & a r t i f i c i a l i n t e l l i g e n c e

� �

baselines of the text. In contrast, a creek is a less severe form
where the spaces between words are accidentally too wide
within one line.

e basic feature of the hz-engine, which was program-
med by Margret Albrecht, is to regard all lines of a given para-
graph at once –as described by Donald E. Knuth in Metafont.
At Urst, all words or syllables are distributed to the lines togeth-
er in a manner where each line gets a line length nearest to its
given individually parametrized width (as default there is usu-
ally column width). e following optimization is controlled
by minimizing the typographical demerits, which are obtained
from a function of the actual line lengths, given line lengths,
given line widths and tolerances of the layout parameters.

If hyphenation is turned on, words are replaced by sylla-
bles. e hz-engine has to follow a lot of exceptions and to pro-
vide solutions for them, e.g. ligature substitution, consecutive
hyphens and good or bad locations for hyphenation within a
word. is level of text/typographic detail promotes a better Ut
and contributes to the reader’s comfort (see Ug.15).

¶

fig. 15
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A comparison between the hz-engine and today’s typical
composition tools demonstrates the superiority of the hz-
engine (see Ug.16). In 1995, the hz-engine was implemented
in InDesign by Adobe. is has been a big step in digital text
composition, but truly it is not the last one.

Chapter Composition (chapter-fit)

e initial idea of chapter-Ut was to apply the same kind
of automation to chapters as is available for paragraphs12.
Whereas the hz-engine handles and optimizes the layout of

fig. 16
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paragraphs (sentences) / lines / words (syllables) / characters, the
chapter-Ut handles the layout of chapters / pages / paragraphs
(sentences)/lines in order to optimize the presentation of text
working at two levels higher. Chapter-2t calculates all lengths
of paragraphs (similar words) and lengths of pages (similar
lines) and balances them for a chapter (similar paragraphs) in
a manner that each individual page (column) gets an optimal
amount of paragraphs which can be managed and Utted with
a minimum of imperfections into the given layout. A special
paragraph-Ut and page-Ut are needed.

Paragraph-2t composes a paragraph in a manner that its last
line gets a certain desired length compared with the line (col-
umn) width. Last lines that are shorter than a certain mini-
mum are not desired. ey open too large a space between
paragraphs; they cause ‘orphan paragraphs’. Likewise, lines
which are longer than a certain maximum are also not desired
because they give no clear optical indication for the end of a
paragraph; they cause a ‘widow paragraph’ (see Ug.17).

fig. 17
The right column shows
paragraphs that end with
a last line of ‘typographi-
cal length’
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Page-2t processes all lines and paragraphs within the text ac-
cording to the original parameters for typesetting, such as
point size, line leadings, line width, etc. en all paragraphs are
distributed and counted. It aims to terminate each page with
the end of a paragraph under consideration of the potential for
shrink or spread of the given text.

Some of the last paragraphs on the pages have to be di-
vided into two parts. A special feature called hyphenation of
paragraphs performs this. Paragraphs are divided best at a
punctuation mark such as a full stop (see Ug.18).

Depending on the length and typographic complexity of a
chapter, this may cause many time-consuming trials because of
necessary iterations and tests to Und the optimal distribution.
e chapter-2t also avoids a chapter ending with a page that is
too long which would create insufficient room for footnotes
(‘widow chapter’), or one having a last page which is nearly
empty (‘orphan chapter’).

Especially important is that chapter-2t should obtain an
even number of pages to allow the start ‘on the recto’ (right

fig. 18
The left illustration
shows a hyphenated
paragraph without
paragraph-fit, the right
with paragraph-fit
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page) and the end ‘on the verso’ (le page). Compare Ug.19 and
Ug.20. Still, page-Ut could be improved in order to handle the
‘famous exceptions’ which are mentioned by developers so
oen. In reality, the handling of these exceptions belongs to
artiUcial intelligence. I think the long list of these anomalies
makes it interesting for computer scientists.

fig. 19
A chapter with 5 pages
before chapter-fit

fig. 20
Same chapter as in fig. 19
with 4 pages after chap-
ter-fit. The example has
paragraphs which have
reasonable lengths of
last lines formed by para-
graph-fit. It has pages
which let it start on the
recto and end on the
verso, and it was typeset
without hyphens. Each
page starts with a para-
graph: No widows, or-
phans, creeks, or rivers
are to be seen



d r . p e t e r k a r o w

� �

Digital Ads

Since the beginning in DTP, we have heard questions such as
this: ‘Computers can do so much. Why can’t you make a pro-
gram which writes my document by itself?’

Early in 1957, people like Hermann Zapf already worked
on layout systems44: ‘Today it is possible to produce entire
books by computers. e text is directly supplied from the
computer into high-speed photocomposing machines. e
make-up is pre-programmed.’ In 1977, he founded the company
Design Processing International Inc. (DPI) in New York with
his friends A. Burns and H. Lubalin of ITC. e DPI-system was
a great dream, but could not be sold or licensed to big players
like IBM, Xerox, Apple, Compugraphic, or Linotype. DPI be-
lieved in a short-term realisation. Step by step all of us had to
learn that the desired pre-programming belongs to artiUcial
intelligence and would take a lot of effort.

In 1988, Gerhard Rubow35 started to work on a layout sys-
tem for ‘ordinary’ ads useful for announcements of births,
marriages, deaths, and events alike. He called it AdMaster.
Before this he had worked successfully on systems for news-
paper layout at the company Hell in Kiel.

fig. 21
Illustration of the basic
levels of hierarchy.
AdMaster let us come
down to earth
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AdMaster let us come down to earth. Gerhard Rubow and
Jochen Lau implemented a system which had a hierarchical
format for the layout (see Ug.21). ey called it IG-format.
Heredity of attributes and typographical rules were the funda-
mental ingredients. Generic templates were the cornerstones
(see Ug.22).

Meanwhile, this system was further developed as VI&VA and
became a system of Luhansa Systems AS29. It is used by large
newspaper companies in order to generate small ads interac-
tively and to show them to the clients for acceptance (see Ug.23
and 24). It is the beginning of digital ads.

‘e make-up is pre-programmed’ is still a dream. Design de-
cisions for layouts are much harder to program than problems
like rasterizing, autotracing, element separation, and kerning.

fig. 22
The software is based
on 8 levels of hierarchy
(left), terms of the
heredity of attributes
(right)

fig. 23
A picture is changed.
It results in the layout of
three groups of text,
which is generated auto-
matically.
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fig. 24
Two obituaries, the
above with more text in
the upper group of text,
below with less text. The
software balances the
layout of all text lines
automatically
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What will the future bring?

On the one side, most of the designers dislike digital text since
they are fearful that it may dissolve their professional existence.
On the other hand, the manufacturers of soware know this
and slow down. But work is going on in the Ueld. It will bring
back the optical adjustments and contextual variations which
have been removed by computers since the seventies.

Hermann Zapf said this: ‘Pleasant looking, easily readable
text has been the aim of typographers since scribes began to
write and Gutenberg perfected printing with movable type.
Text transports information. It must be accomplished with a
minimum of communication errors. But it does even more
than this; its typographic appearance establishes the care with
which it is presented –its authenticity and its persuasive power.
e goal is the creation of a harmony in which text, images and
graphics are related in a controlled manner.’

I am anxious to see the next steps. I am sure that we will
have the beneUts of the analogue past and the digital present
in the near future. ArtiUcial intelligence will take place and
give us more digital text. And this will be a remarkable accom-
plishment.

In the Uies, people like me thought that motors in automo-
biles were perfect and needed no more improvement aer
having 50 years of development behind them. A comparison of
those engines with today’s motors shows how wrong they were.
Some of us think similarly today that perhaps digital typefaces
and especially digital text don’t need improvements anymore.
But they haven’t been perfected yet; rather, they still need our
engagement and talent.
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Remark 1

Master disks for photo typesetting
My Urst customers used digital outlines to cut vinyl foils (ruby-
lith sheets) on Vatbed plotters. Rubylith consists of two layers.
e lower is transparent, the upper coloured. e upper was
cut and peeled off where one wanted to have transparent areas.
Character by character was cut and peeled. Together they were
placed in a large grid on a wall to be photographed as a font
which could be reproduced on plates to make the master disks
for photo typesetting machines.

Remark 2

How to imagine rasterizing
To understand rasterizing, one should imagine a character
drawn in black on a white sheet of paper. en one visualizes
rasterizing as putting a transparent grid foil over this charac-
ter and painting all cells black which cover more than 50%
of the black area of the underlying character. A black cell is
called a black raster pixel. e character size should be re-
garded as Uxed for the present, but the grid size is Vexible.
A larger (coarser) grid would give less raster pixels, a smaller
(Uner) grid more. So, a coarser raster generates a smaller char-
acter, while a Uner grid generates a larger character on a display
device, which –typically– has a Uxed resolution.

Aer one has rasterized characters for the Urst time, one
immediately learns the job: avoiding arbitrary effects. In the
case of an antiqua lower case m for example, one can usually
realize this: none of the three vertical stems have the same
width counted in raster pixels nor do the two white spaces in
between. Furthermore, the six parts of the bottom serifs have
different forms and the two upper ones have different round
bows. e upper serif of the Urst stroke is different from that
of character n. Many of the sharp corners are not really sharp
because raster dots are missing. And so on.



Remark 3

What does 72 dpi mean to the variety of typefaces?
One inch measures 72 pts approximately. A point size of 9 pt for
a 72 dpi display is taken as a rough but typical example. We as-
sume quadratic raster cells. Under these assumptions, we have
just 9 pixels for the body size, 6–7 for the cap(ital) height, 3–2
for descender length, and 4–5 for lower case height.

We raster the lower case character e: it has a horizontal
bow at the top, a horizontal stem in the middle, and a horizon-
tal bow at the bottom. In between these three black strokes
there are two white spaces which separate them. erefore, we
need at least 5 grid lines to represent the image. We don’t have
the freedom to represent the thin horizontal stem in the mid-
dle of the e by half a pixel or a quarter of it.

Consequently, one can imagine that it isn’t possible to rep-
resent e’s of different typefaces at 9 pt for 72 dpi differently. And
one realizes that characters at that size need hand-editing at
least for the purpose of working out coarse differences.

Remark 4

How hinting works
We imagine rasterizing as putting a transparent grid foil over
an underlying character drawn black on white paper, and
painting all grid cells black which cover more than 50% of the
black area of the character. If one shis a part of the outline
of the character in any direction one gets different rasterizing
results. If one doesn’t do it arbitrarily, but rather in the right
manner, one improves the rasterizing result.

As an example, we can vision the character m of a very
light sans serif typeface. e m has three vertical stems and two
vertical white spaces in between. We want to generate it for the
size of 9 pt on a 72 dpi display. In this case, nine pixels are avail-
able as the maximum to the total width. Now we have to make
a decision about the design of the bitmap: we decide to give

d i g i ta l t y p o g r a p h y & a r t i f i c i a l i n t e l l i g e n c e

� �



a width of 1 pixel to each of the three vertical stems, two pix-
els to the two white spaces in between them, one pixel to the
front of the m as le side bearing, and one pixel to the back as
right side bearing. Altogether, we have distributed nine pixels:
(1+(1+2+1+2+1)+1).

We assume that the real le side bearing of the m is 1.4 pix-
els at this size and the stem width 0.85 pixels. We put the raster
foil on it and Ut the farthest le grid line with the front of the m.
It is marked as the front of the le side bearing. So, stepping to
the right in the middle of the m-height, the Urst vertical grid
line lies in the white area before the m, but the second lies just
in the middle of the Urst black stem, namely leaving 0.4 of a
black pixel on its le side and 0.45 of a black pixel on its right
side. So, we count no black pixels on the second and the third
vertical grid line. We have a rasterizing accident!

Hinting now plays its role and helps with the rasterizing. It
identiUes the le and right outline of the Urst stem of the m.
Also, it knows how to make design decisions such as those
above. erefore, it knows that the le side bearing should get
one pixel and the stem width also one pixel.

At Urst, it shis the total m to the le until the le outline
of the Urst stem is positioned exactly under the Urst grid line.
en it shis all parts of the outline of the m, which are located
to the right of the Urst grid line. It shis them until the right
outline of the Urst stem is positioned exactly under the sec-
ond grid line. is only demonstrates one implementation
concerning the execution of hinting, in reality it is much more
complex.

Hinting is executed consecutively and really fast, stem-by-
stem, white space-by-white space, bow-by-bow, and serif-by-
serif. Arbitrary effects are avoided step by step.

ere are at least 17 different hinting instructions: stem,
bar, bow, arch, curve stem, curve bar, counter, weight, slant,
extreme, serif, bar serif, overhang, tension, spot, delta, and
dropout11, p.112
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Remark 5

Grayscaling is important for the fast transport of text
Our sight is based on our eyes and an admirable system of
pattern recognition in our brain. e eyes focus on a relatively
small area (to get more information) and simultaneously catch
an overall larger surrounding of it (to get less information)41.
Logically, this reduces the Vow of imaged details to the brain
and is adapted to its enormous, but still limited power of per-
formance.

Images are probably decomposed into locally received dif-
ferences of light and color signals with the help of the retina8,
sent as picture elements via nerves to the brain where the im-
ages are improved at the edges, reconstructed, compared with
primitive patterns in the beginning, evaluated according to
previous experience, and assessed to formerly received images.
Finally, this process forms the ‹real› image which we see indi-
vidually.

While reading, experience has trained us to extract the in-
formation itself as early as possible and to discard most of the
received images in order to avoid an ‹overVow› in our memory.
For fast reading, we rely on familiar typefaces in familiar media
like books, newspapers, and letters41.

Today, computers are also becoming a familiar medium as
well. erefore, its representation of text has to be as familiar
and as typical as possible.
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